Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids.
نویسندگان
چکیده
Polyploidization is a widespread process that results in the merger of two or more genomes in a common nucleus. To investigate modifications of gene expression occurring during allopolyploid formation, the Brassica napus allotetraploid model was chosen. Large-scale analyses of the proteome were conducted on two organs, the stem and root, so that >1600 polypeptides were screened. Comparative proteomics of synthetic B. napus and its homozygous diploid progenitors B. rapa and B. oleracea showed that very few proteins disappeared or appeared in the amphiploids (<1%), but a strikingly high number (25-38%) of polypeptides displayed quantitative nonadditive pattern. Nonstochastic gene expression repatterning was found since 99% of the detected variations were reproducible in four independently created amphiploids. More than 60% of proteins displayed a nonadditive pattern closer to the paternal parent B. rapa. Interspecific hybridization triggered the majority of the deviations (89%), whereas very few variations (approximately 3%) were associated with genome doubling and more significant alterations arose from selfing (approximately 9%). Some nonadditive proteins behaved similarly in both organs, while others exhibited contrasted behavior, showing rapid organ-specific regulation. B. napus formation was therefore correlated with immediate and directed nonadditive changes in gene expression, suggesting that the early steps of allopolyploidization repatterning are controlled by nonstochastic mechanisms.
منابع مشابه
Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica.
Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance...
متن کاملEpigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance.
Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brass...
متن کاملGenome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq
Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinat...
متن کاملGenome-Wide Gene Expressions Respond Differently to A-subgenome Origins in Brassica napus Synthetic Hybrids and Natural Allotetraploid
The young allotetraploid Brassica napus (2n = 38, AACC) is one of models to study genomic responses to allopolyploidization. The extraction of AA component from natural B. napus and then restitution of progenitor B. rapa should provide a unique opportunity to reveal the genome interplay for gene expressions during the evolution. Herein, B. napus hybrids (2n = 19, AC) between the extracted and e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 173 2 شماره
صفحات -
تاریخ انتشار 2006